Three-Dimensional 3D Figures

Solid: A three-dimensional figure that encloses a \qquad .

Ex. A box of cereal is a solid.
Polyhedron: A solid whose \qquad are all polygons.

Ex. A pyramid is a polyhedron because all of its faces are polygons.
Face: A \qquad surface of a polyhedron.

Ex. The front of a house could be a face of a polyhedron.
Edge: A \qquad segment where two \qquad intersect.

Ex. The perimeter of each face makes the edges to any polyhedron.
Vertex: A \qquad where three or more \qquad
intersect.

Ex. The sharp corners of any box are examples of the vertex.

Prism: A polyhedron that has two _____ faces are always parallelograms. Draw a picture
Pyramid: A polyhedron that has the lateral faces are always
Draw a picture

Together Examples: Draw the front, side, and top view of each stack of cubes. Then find the number of cubes in the stack.
Tip: Dot paper can help you draw three-dimensional figures, or solids.

Front-

Side-

Top-
\# of Cubes-
2.

Front-

Side-

Top-
\# of Cubes-

Pause and Try: Draw the front, side, and top view of each stack of cubes. Then find the number of cubes in the stack.
Tip: Dot paper can help you draw three-dimensional figures, or solids.

Front-

Side-

Top-
\# of Cubes-
4.

Front-

Side-

Top-
\# of Cubes-

Surface Area SA of Prisms

Surface Area: The \qquad of a solid is the \qquad of all the areas of all of its \qquad .

Net: A two-dimensional representation of a \qquad . You can use a net to find the \qquad of a solid.

Find the area of all of the faces and add them all together.
Together Examples: Draw a net of each prism, and then find the area of each prism.
1.

2.

Pause and Try: Draw a net of each prism, and then find the area of each prism.
3.

4.

Surface Area SA of Pyramids

Label one of the faces as a BASE and the other as a LATERAL FACE. Use the shape of the base to identify the pyramid.
a.

b.

Pyramid

Pyramid

Hint: ALL the \qquad of a pyramid are $!$

Volume of Rectangular Prisms

Volume:

Hint: Volume is always \qquad - Example:

